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Abstract 
 

In this paper, two new generalized entropies have been introduced with their respective properties. The 
results of these entropies have been verified for the exponential and weighted exponential distributions. 
These two entropies produce the results in the form of simple entropy, generalized entropy, residual 
entropy, cumulative entropy and mixtures of all these entropies. Some characteristics of residual & past 
entropy have been derived and special cases have also been obtained. These cases indicate that new 
generalized entropies are more comprehensive and useful. The main advantage of this study is to derive 
different types of generalization of entropies using the different parameter values of α and β. 
 

 
Keywords: Shannon entropy (Simple entropy); residual entropy; past entropy; exponential distribution. 
 

1 Introduction 
 
Entropy is widely used to measure the maximum disordering of a system. Entropy is the average of an 
information function. Shannon [1] was the first scientist who introduced the concept of entropy. As 

Original Research Article 



 
 
 

Basit et al.; AJPAS, 11(3): 21-33, 2021; Article no.AJPAS.65542 
 
 
 

22 
 
 

information function is the measure of amount of information then entropy is the average of the amount of 
information.   
Renyi [2], Varma [3], Havrda and Charvat [4], Kapur [5], Arimoto [6], Sharma and Taneja [7], Sharma and 
Mittal [8], Awad et al. [9] and Tsallis [10] derived the different generalizations of the entropy. 
 
Ebrahimi [11], who first introduced the residual entropy. Residual entropy is widely used in the life sciences 
and engineering. It is useful in the situation when uncertainty of any component of a system is measured by 
the information about its current age. Residual entropy is based on the survival function or the distribution 
function of the life distributions. Ebrahimi [11], Crescenzo and Longobardi [12], Rao et al. [13], Renyi 
(2004), Crescenze [14], Sunoj and Lino [15] give the different residual and past entropies which are 
expressed in equations (1 – 6) respectively. In the following equations �(�), �(�) ��� �(�) represents the 
probability density function, distribution function and distribution function at specific time ‘t’ respectively.  
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    
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1
ln 1 ; 1

1
H X F x dx




    
 
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                                           (6) 

 
In the literature different results of entropy, past entropy, residual entropy, cumulative entropy and 
generalized entropies are presented with their respective applications. Basit and Iqbal [16], Ebrahimi and 
Kirmani [11], Gupta and Nanda (2002), Abrham and Sankaran (2006), Nanda and Paul (2006) and Baig and 
Javid [17,18] gave the detailed overview on the residual entropy. Sunoj and Lino [15,19], Sunoj et al. [20], 
Sati and Gupta [21], Thapliyal and Taneja [22], Thapliyal et al. [23] produced their research on dynamic 
residual entropy, cumulative residual Tsallis entropy, Renyi entropy of order statistics and dynamic 
cumulative residual entropy. Ramdan [24], developed weighted entropy, weighted residual entropy and 
weighted pas entropy.  
 
The comparison of entropies is also mentioned in the literature. Dey et al. [25], Mahdy and Eltelbany [26], 
Maszczyk and Duch [27] Majumdar and Sood [28], and Basit et al. [29] compared different entropies for 
different life distributions.  
 
In the last two decades, entropy is widely use in different fields of sciences and social sciences. Kovalev [30] 
described the role of entropy in economics and identified its misuse. Purvis et al. [31] explained three 
different definitions of entropy in the field of economics. They produced the application of entropy to urban 
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system. Martos et al. (2018) studied stochastic process and derived some different entropies with their 
applications. Chen et al. [32] studied the sample entropy and permutation entropy with reference to the 
measuring complexity of time series. Lin and Oyapero [33] used the entropy and wavelet variance for 
analyzing the sequence of DNA. Sheraz et al. [34] and Dionisio et al. [35] studied the financial markets 
volatility using the different entropy measures.  
 
In this paper, we are introducing two generalized entropies denoted by 

   ,
1

A X 
and 

   ,
2

A t 
. The 

entropy 
   ,

1
A X 

produces different generalization of entropy as well as different cumulative entropies. 

Similarly, the entropy 
   , 2

A t 
is producing different generalized residual entropies. The main reason of 

introducing these entropies is to include the simple entropy, generalized entropy, residual entropy and 
mixture of generalized and cumulative entropies. These entropies are more useful for the complex systems 
because these entropies are based on density function and survival function of the life distribution.  These 
entropies easily provide the information of simple system as well as complex system. These entropies are 
more applicable for the systems where the hazard rate is in complex form. The remarks and theorem derived 
in section 2 and 3 described that new entropies are the generalization of some entropies developed 
previously. 
 
In section 2; new generalized class of entropy has been introduced. The result of residual and past entropies 
for weighted exponential and exponential distribution are also described in section 2. The properties of new 
entropies and comparison are given in section 3. 
            

2 New Class of Entropy Measures 
 
In this section, we introduced two new classes of generalized entropies. These entropies give some particular 
cases of generalized entropies and residual & past entropies. If ‘X’ has absolutely continuous distribution 
function ‘F’ then the new generalized entropy is expressed in (7) and generalized residual entropy is 
expressed in (8).  
 

       
     1

ln 1 , & 1, 1 11
0

A f x F x dxX
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
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(7) 
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     1

ln 1 , & 1, 1 12
A f x F t dxt

t

 
    



  
               (8) 

 
Remark 2.1 Renyi [2], Rao et.al. [13], Shannon [1] and Sunoj and Linu [15] entropies are the particular 

cases of the    ,
1

A X  . 

 

I. Renyi [2] generalized entropy is the particular case of    ,
1

A X 
when β=0. 

II. Rao et.al. [13] entropy is a special case of     ,
1

A X  when 0, 1   . 

III. Shannon [1] entropy is a special case of     ,
1

A X  when 0, 1    

IV. Sunoj and Linu [15] entropy is the particular case of    ,
1

A X 
when 0  . 
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Remark 2.2 Renyi (2004) entropy is a particular case of    ,,
2

A X t 
 when    . 

     
 

  
1

1 , ln, 1 12

f x
A X t dx

F t
t



   

   
   

   


 
 

       1 , Re 2004,
2

A X t nyi                                  (9) 

 

Example 2.1  Let ‘X’ follows exponential distribution with pdf  , xf X e    and distribution 

function  , 1 xF X e    . Then    ,
1

A X 
 holds the following result. 
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 
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 
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   
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                         (10) 

 

Example 2.2 Let ‘Xw’ follows weighted exponential distribution with pdf  ,g X  and distribution function 

 ,G X  . Then 
   ,

1
A X w 

 holds the following result. 

 

   
  

    1
1 ,

1
ln 1 1, 2 ,

1 1
A X U 

               
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          (11) 

 
where   
 

 
   

  
   2, 1
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w

W X f X
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E W X
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           
 

 

 

 1, 2,U     is Tricomi confluent hypergeometric function and 

 

    1 1

0

1
, , 1 wsU w s t e ds


     




 
 

Example 2.3 Let ‘X’ follows exponential distribution with pdf  , xf X e    and distribution 

function  , 1 xF X e    . Then    ,,
2

A X t   holds the following results. 
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   
  

 
1

2 ,

1
ln

1 1
A X t



 

   
       

      

                      (12) 

              2 ,1 1 , 1A X t H X r t t                    (13) 

 

where  
 
 

,

,

f t
r t

F t





is the hazard function and  H X

is Renyi (1961) generalized entropy. 

 

Example 2.4 Let ‘Xw’ follows weighted exponential distribution with pdf  ,g X  and distribution 

function  ,G X  . Then    ,,
2

A X t   holds the following result. 

 

            

 

2 ,1 1 1

[ 1,
ln

1

,w w wt H X

Gamma t

A X t r        

    
  

    

 

           (14) 

 

where  
 
 

,

,
w

g t
t

G t
r





is the hazard function and  wH X is Renyi [2] generalized entropy of weighted 

exponential distribution respectively. 
 
Theorem 2.1 Let ‘X’ is a positive continues random variable having pdf  f X  and distribution function 

 F X . Then    ,
1

A X   is expressed as follows: 

 

     
 

1
, 11

A H X CX   
 


                            (14) 

 

where C is constant and 0C   for the distribution having hazard rate is constant and & 1.     

 
Proof: 
 
Consider L.H.S.  
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
 

 

  
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        
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        (15) 

 

     
 

1
, 11

A H X CX   
 


 

 
From eq (10) and (15) 
 

 

    

      
   

1

1 1
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C
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E f x

 

    


  
       

        

                             (16) 

 
Theorem 2.2 Let ‘X’ is a positive continues random variable having pdf  f X  and distribution function 

 F X . Then    ,,
2

A X t 
 is expressed as follows: 
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             

     
      

2 ,1 1 ,
2 , ,

1 1 1

A X t

t

A X t e
r t f t f x dx

t S t f t

    
  

 

  
      

  


  

(17) 

 where  
 

 
 
 

,

,

f t
r t

F t





 ,    1S t F t    and  

 / f t
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Partially differentiate w.r.t. ‘t’ 
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Hence (18) is equal to the R.H.S of (17). 
 

3 Properties 
 

In this section we derived some linkages between the new entropies and Renyi [2] entropies. 
 

Theorem 3.1 Let ‘X’ is a positive continues random variable having pdf  f X  and distribution function 

 F X . Then    ,
1

A X   has the linear relationship with the Renyi [2].  
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The result can be easily drawn from the theorem 2.1.  
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where  C t is a function of truncated time ‘t’. 
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By comparing (20) and (21), we get the  C t . i.e. 
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4 Relative Loss 
 
For the comparison of the entropies, relative loss has been calculated using the exponential and weighted 
exponential (Size-biased moment exponential) distributions.   
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where  H Y  is the entropy of size-biased moment exponential distribution and  H X
 is the entropy of 

exponential distribution. 
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Table 1. Relative loss α – β order entropies 
 
 θ=0.6, α = 1.2 θ=0.9, α = 1.2 θ=1.2, α = 1.2 
 β V 1966 K 1967 ST1975 New A1 V 1966 K 1967 ST1975 New A1 V 1966 K 1967 ST1975 New A1 
 0.20 -0.202 0.013 -0.309 -0.297 -0.252 0.015 -0.334 -0.364 -0.306 0.016 -0.362 -0.434 
 0.40 -0.271 -0.104 -0.392 -0.240 -0.351 -0.124 -0.454 -0.280 -0.443 -0.144 -0.528 -0.317 
 0.60 -0.330 -0.222 -0.405 -0.209 -0.440 -0.280 -0.505 -0.237 -0.575 -0.344 -0.629 -0.262 
 0.80 -- -0.330 -0.385 -0.189 -- -0.440 -0.517 -0.211 -- -0.575 -0.692 -0.229 
 0.99 -0.426 -0.424 -0.351 -0.176 -0.595 -0.591 -0.509 -0.194 -0.829 -0.822 -0.729 -0.208 
 1.20 -0.470 -0.516 -- -0.165 -0.671 -0.755 -- -0.180 -0.965 -1.125 -- -0.192 
 1.40 -0.508 -0.596 -0.261 -0.157 -0.740 -0.908 -0.458 -0.170 -1.094 -1.446 -0.764 -0.181 
 1.60 -0.543 -0.667 -0.218 -0.151 -0.805 -1.057 -0.426 -0.163 -1.225 -1.804 -0.767 -0.172 
 1.80 -0.576 -0.732 -0.178 -0.146 -0.868 -1.201 -0.393 -0.157 -1.357 -2.204 -0.766 -0.165 
 2.00 -0.606 -0.790 -0.141 -0.142 -0.928 -1.341 -0.359 -0.152 -1.491 -2.652 -0.760 -0.159 
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Table 2. Relative loss of residual entropies 
 

 θ=0.6, α = β=1.2 θ=0.9, α = β=1.2 θ=1.2, α = β=1.2 
 T E1996 LC2002 New A2 E1996 LC2002 New A2 E1996 LC2002 New A2 
 0.20 -0.373 -0.419 0.267 -0.499 -0.574 0.441 -0.659 -0.783 0.557 
 0.40 -0.357 -0.401 0.467 -0.464 -0.534 0.590 -0.596 -0.707 0.645 
 0.60 -0.339 -0.382 0.548 -0.430 -0.494 0.624 -0.539 -0.638 0.645 
 0.80 -0.323 -0.363 0.583 -0.399 -0.458 0.626 -0.490 -0.579 0.625 
 0.99 -0.307 -0.345 0.597 -0.373 -0.427 0.616 -0.451 -0.530 0.601 
 1.20 -0.292 -0.327 0.600 -0.347 -0.396 0.600 -0.413 -0.485 0.575 
 1.40 -0.278 -0.311 0.598 -0.325 -0.371 0.583 -0.383 -0.448 0.551 
 1.60 -0.265 -0.297 0.591 -0.306 -0.348 0.566 -0.357 -0.416 0.528 
 1.80 -0.254 -0.283 0.583 -0.289 -0.328 0.549 -0.334 -0.388 0.507 
 2.00 -0.243 -0.271 0.574 -0.273 -0.310 0.532 -0.313 -0.364 0.488 

 

5 Conclusion 
 
In this study, we derived two new classes of generalized entropy. These entropies produce some new results 
which are extensions of some previous entropies. Shannon [1], Renyi entropy ([2], 2004), Rao entropy [13] 
and Sunoj and Linu entropy (2010)[15] are the special cases of new generalized entropies. This study also 
describes the linear relationship between the simple entropy and weighted entropy. The main advantage of 
this study is to derive different types of generalization of entropies using the different values of parameters, 
α and β. These two entropies generalize the simple entropy, generalized entropy, cumulative entropy, 
generalized residual entropy and combinations of these different types of entropies. We expect to further 
study their applications in future projects.  
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