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ABSTRACT 
 
Under the changing climatic scenarios, sustaining agricultural production and enhancing input use 
efficiency is highly crucial to ensure food security in future. As crop productivity is considerably 
affected by soil characteristics such as soil organic carbon (SOC), nutrient availability, pH, salinity 
and soil moisture etc., thus their spatial variability needs to be assessed for site-specific and more 
efficient management. RS, GIS and GPS can be used quite successfully for assessing spatial 
variability in these properties. Recently with the advent of highly sophisticated sensors, it is possible 
to assess various soil properties by observing spectral reflectance in different wavelength bands and 
computing various spectral indices from the data recorded through satellite remote sensing. Spectral 
reflectance in different wavelength bands viz. visible, thermal and microwave etc. along with 
different spectral indices computed from spectral reflectance viz. normalized difference vegetation 
index (NDVI), soil adjusted vegetation index (SAVI), modified soil adjusted vegetation index 
(MSAVI), ratio vegetation index (RVI), soil moisture index (SMI), normalised difference water index 
(NDWI) and normalized difference salinity index (NDSI) etc. are used to retrieve different soil 
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properties from satellite data. Similarly, various spatial interpolation techniques viz. inverse distance 
weighting (IDW), ordinary kriging (OK), radial basis function (RBF) and empirical bayes kriging 
(EBK) etc. are used for spatial interpolation of various soil characteristics. A critical review 
concluded that geospatial techniques can be used successfully for retrieval and spatial interpolation 
of various soil properties, which can be highly beneficial in site specific management leading to 
improved input use efficiency and sustained agricultural productivity for future food security. 
 

 
Keywords: Remote sensing; GIS; GPS; spatial variability; soil properties. 
 
1. INTRODUCTION 
 
Soil is a dynamic entity with distinct chemical, 
physical, biological and mineralogical attributes 
that ceaselessly differ over time and space 
Rogerio et al., [1]. Geospatial technology provide 
better alternatives to conventional traditional 
methods, as they can cover large regions with 
information on spatio-temporal variations in soil 
properties Mohammed et al., [2]. Such spatio-
temporal variation accounts for the soil 
heterogeneity which tends to occur both at small 
and large scale within the soil Cambardella and 
Karlen, [3]; Feng et al., [4]. The heterogeneity 
may be either due to intrinsic soil forming factors 
influencing differentially during the pedogenic 
processes or extrinsic factors such as tillage, 
irrigation, crop rotation and land degradation etc. 
Further, the type of vegetation, geomorphic 
elements and landforms also contribute towards 
gradual increase in the soil variability Buol et al., 
[5]. Salviano [6] first presented the spatial 
variability of soil properties as affected by long 
term soil erosion. Thus, the monitoring and 
quantification of soil variability is important to 
comprehend the various land use and soil 
management systems. Recently, various 
methods have been proposed to retrieve different 
soil properties from remote sensing data 
Mohammed et al., [7]. 
 
Evaluation and analysis of soil properties is the 
main application of geospatial technology in 
agriculture. Efficient monitoring of soil nutrient 
contents from geospatial technologies is very for 
farmland soil productivity, sustainable agricultural 
development and food security Peng et al., [8]. 
Remote sensing involves extraction of useful 
information from images and other forms of 
pictorial representation of an object captured 
from a distance. Both digital and analog satellite 
data is used to prepare small scale soil resource 
maps representing various soil sub-groups and 
their association Manchanda et al., [9]. Various 
soil properties can be easily determined from 
remote sensing techniques. For instance, surface 
soil moisture can be estimated based on NDVI 

and land surface temperature (LST). NDVI is 
estimated from reflection of red and near infrared 
region, whereas LST is determined from thermal 
emission Amato et al., [10]; Hammam and 
Mohamed, [11]; Rahimzadeh-Bajgiran et al., [12]. 

 
The information on the spatial distribution and 
soil moisture content is very important in 
hydrological applications and precision farming in 
addition to climate change analysis and 
meteorology etc. Pasolli et al., [13]. Remote 
sensing techniques are extremely helpful in soil 
moisture estimation and soil mapping. Remote 
sensing provides the data on surface soil 
moisture content, giving information about the 
amount of moisture in the soil that further helps 
to decide the type of crop to be grown in the soil. 
From soil mapping, farmers may come to know 
about the sites with requirements of fertilizer or 
irrigation for any crop. This is highly beneficial for 
farmers involved in precision agriculture Sinha et 
al., [14]. Geographical information system (GIS) 
and remote sensing have potentially exposed 
accelerated, spatio-temporal and repetitive, 
synoptic view, thus providing newer possibilities 
of estimating various soil properties. Therefore, 
assessing spatial variability distribution of various 
soil properties is crucial for assessing rates of 
ecosystem processes Schimel et al., [15], 
understanding how ecosystem works Townsend 
et al., [16] and effects of future land use changes 
on availability of nutrients Kosmas et al., [17]. 
 

2. ADVANTAGES OVER CONVENTIONAL 
METHODS 

 

Assessment of spatial variability in soil properties 
is possible through scientific survey of soil that 
renders an accurate and scientific repertoire of 
various soils, their nature, type and extent of 
distribution to facilitate the prediction regarding 
the distinct characteristics and potentialities 
possessed by such soils. Apart from this, it also 
generates information about terraces, landform 
and vegetation etc. The timely and reliable 
information on soils is essential for the execution 
of efficient management strategies for 
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sustainable agriculture. Precision agriculture 
includes accurate analysis of various soil 
properties at field scale. Soil being one of the 
major factors influencing the growth and yield of 
plants and various other processes in agriculture, 
its properties should be determined with 
immense accuracy to benefit the crop planning 
and requirement, hence affecting growth and 
yield. 
 
The traditional approaches of estimation of soil 
properties such as sampling are known to have 
less accuracy as some sites in the field may 
remain unsampled leading to inaccurate results 
and hence poor planning. However, in the recent 
times, remote sensing techniques along with 
geographic information system (GIS) and global 
positioning system (GPS) have gained the 
attention of agricultural scientists throughout the 
world to fill such gaps in conventional 
methodologies. The advent of highly 
sophisticated hyperspectral sensors have made 
it possible to monitor various soil properties viz. 
pH, salinity, alkalinity, moisture and nutrient 
status etc. using satellite data. In addition to this, 
GIS and GPS are major parts of geospatial 
technology. Geographic information system is a 
framework that makes it possible to capture and 
analyze the spatial and geographic data whereas 
GPS (originally NAVSTAR) is satellite based 
radio-navigating system. While analyzing any 
type of soil properties, GIS is used to create soil 
database. The attribute data are linked with 
spatial data in GIS.  GPS,on the other hand, is 
used to locate different soil sampling locations, 
thus helping growers to develop maps portraying 
fertility variations throughout the fields, so that 
one can vary crop inputs in field based on GIS 
maps or real-time sensing of crop conditions 
(Fig. 1). 
 
This technology is being used quite successfully 
in precision agriculture as it involves accurate 
analysis of various soil properties at field scale. 
Precision Agriculture deals with site-specific 
management of the agricultural inputs to improve 
yields and input use efficiency. Soil sensing and 
mapping is one of the most important improved 
management technologies included in precision 
agriculture. For soil sampling, some 
representative soil samples are collected and 
analysed. These samples exhibit spatial 
variability. A global positioning system (GPS) 
receiver with a data logger measures the soil 
sample and GIS generates a map that is further 
processed in addition to other spatially varying 
layers. This approach is often termed as a map-

based method. Whereas, other sensors that are 
used without a GPS receiver belong to real time 
system Morgan and Ess, [18]. The most 
important soil sensors used for measuring spatial 
and temporal characteristics of soil parameters 
include electrical, electromagnetic, acoustic, 
mechanical, optical, radiometric,electrochemical 
and pneumatic sensors Adamchuk et al., [19]. 
Geospatial technologies used in this type of 
farming are important to understand the spatio-
temporal features of the soil. This helps in site-
specific management and optimization of 
resources. A large number of researchers, soil 
scientists and farmers make the potential use of 
remote sensing and geographical information 
system as an important component of precision 
farming Liaghat and Balasundram, [20] to 
increase crop productivity, input use efficiency 
and profitability. 
 

3. HISTORICAL DEVELOPMENT 
 
Bushnell [21] explained the efforts made in the 
1920s by using aerial photographs to depict the 
boundaries of different soil series. Relationships 
between soil properties and remotely sensed 
data have been mainly examined from the 
reflective region of the electromagnetic spectrum 
(0.3 to 2.8 μm) and some in the microwave and 
thermal bands. The differences in iron content, 
texture and organic matter content are related to 
various spectral responses in the reflective 
spectrum Stoner and Baumgardner, [22]. Soil 
albedo is highly correlated to reflectance-based 
data Post et al., [23]. Predictive equations have 
been developed from reflectance data over tilled 
fields to estimate silt, sand and/or clay                   
content Suliman and Post, [24]; Coleman et al., 
[25]. 
 
Henderson et al. [26] observed strong correlation 
between visible wavelengths (0.425 to 0.695 μm) 
and organic matter in soils with the same parent 
material, whereas, this relationship could be 
affected by Fe and Mn-oxides for soils with 
different parent materials.In this case, better 
predictions of organic carbon content was made 
by the use of middle infrared bands. White salt 
crust represented salt-affected soils, which had 
higher NIR and visible reflectance Rao et al., 
[27]. This spectral response, however, cannot 
always be used for identification of saline soils, 
because salt-crusted soils must have NIR and 
visible properties similar to soils with high sand 
contents. The salt-affected soils can be better 
differentiated by including thermal data Verma et 
al., [28] and L-band microwave data Sreenivas et 
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al., [29]. Bbased on the spectral reflectance of 
soil, many spectral indices have been devised for 
retrieval of soil properties using geospatial 
techniques (Table 1). 
 

Soil properties that can be deduced from crop 
response include soil nutrient deficiencies 
McMurtrey et al., [30]; Bausch and Duke, [31], 
salinity Wiegand et al., [32], and soil moisture 
availability Colaizzi et al., [33]. Wiegand et al. 
[32] made use of SPOT HRV imagery and 
airborne digital videography in conjunction with 
plant and soil samples for quantification and 
mapping of electrical conductivity. Colaizzi et al. 
[33] studied the relation between crop water 
stress index (CWSI) and soil water depletion. 
Wildman [34] illustrated the relation between 
crop patterns in color-infrared (CIR) photos and 
soil type in irrigated fields. Soil organic matter 
(SOM) is known to have good correlation with 
NIR and visible reflectance Stoner and 
Baumgardner, [22]. Sudduth and Hummel [35] 
made a portable spectrophotometer for the 
purpose of acquiring NIR soil reflectance data at 
various narrow-band wavelengths and were able 
to predict SOM with different soil types and 
moisture contents. Thus, with the recent 
advancements in the field of geospatial 

technology, many research studies have been 
carried out to estimate various soil properties 
(Fig. 2). 

 
3. ASSESSING SOIL PROPERTIES WITH 

GEOSPATIAL TECHNIQUES 
 
3.1 Organic Matter 
 
Soil organic matter is a very crucial factor which 
not only influences the crop production, but also 
affects soil color and quality Zomer et al., [51]. 
The derivation of soil organic matter is from plant 
residue Allison, [52]. Soil is the most essential 
source of carbon in the world Swift, [53]. Soil 
organic carbon (SOC) affects the agricultural 
productivity and contains about 75% of Total 
Carbon (TC) pool of terrestrial ecosystem. Large 
amount of SOC leads to enhanced crucial 
ecosystem functions, soil quality, nutrients, soil 
structure, nutrient supplies for soil microbial 
fauna and water holding capacity. Increasing 
SOC levels are responsible for better crop 
production due to improved plant available water 
holding capacity of soil, better plant nutrient level, 
availability and storage as well as enhancement 
of soil physical properties Lal, [54]. 
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Fig. 1. Role of geospatial techniques in retrieval and spatial variability assessment of soil 
properties 
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Table 1. Different spectral indices used for assessing soil properties through remote sensing 
 

Soil property Vegetation index Formula References 
Soil organic 
matter 

Modified Soil Adjusted 
Vegetation Index (MSAVI) 

NIR-Red(1+L) 
NIR+Red+L 

Qi et al., [36] 

Normalised Difference 
Vegetation Index (NDVI) 

NIR-R 
NIR+R 

Rouse et al., [37]; 
Tucker, [38] 

Ratio Difference Vegetation 
Index (RDVI) 

NIR-R 
(NIR+R)0.5 

Roujean and Breon, 
[39] 

Modified Non Linear 
vegetation Index (MNLI) 

(p
2
NIR-pR)(1+L) 

(p2NIR+pR+L) 
Gong et al., [40] 

Soil moisture 
 

Soil Moisture Index (SMI) (LSTmax-LST) 
(LSTmax- LSTmin) 

Mohamed et al., [2] 

Soil Moisture Index (SMI) (������ - ���)  +1  
(������ - ������)  

van Leeuwen, [41] 
 

 Moisture Stress Index 
(MSI) 

MidInfrared 
NearInfrared 

Zakir M, [42] 

Normalised Difference 
Water Index (NDWI) 

(NIR – MidIR) 
(NIR + MidIR) 

Zakir M, [42] 

Soil Moisture Index (SMI) TSmax-LST 
TSmax-TSmin 

Ghazali et al., [43] 

Soil salinity Normalised Difference 
Vegetation Index (NDVI) 

NIR-R 
NIR+R 

Ghazali et al., [43] 

Ratio Vegetation Index 
(RVI) 

NIR 
R 

Major et al., [44] 

Normalised Difference 
Salinity Index (NDSI) 

(R-NIR) 
(R+NIR) 

Khan et al., [45] 

Enhanced Vegetation Index 
(EVI) 

2.5(NIR-R) 
(NIR+R+L) ×(1+L) 

Liu and Huete, [46] 

Soil Adjusted Vegetation 
Index (SAVI) 

(NIR-R) 
 (NIR+R+L) × (1+L) 

Huete, [47] 

Salinity Index (SI) √BLUE × √R Khan et al., [45] 

Salinity Index (SI1) √G X √R Khan et al, [45] 

 
Geostatistical techniques have been widely used 
to map SOC content. Digital signatures are 
identified using various satellite imagery band 
combinations. Different slopes, soils, and land 
use categories have different amount of SOC 
content which can be analyzed using the GIS 
and RS techniques. Till date many geostatistical 
techniques were used to analyse the spatial 
distribution of SOC Kumar et al., [55,56]. But, 
classical statistics could not give accurate results 
because some areas remained unsampled. As a 
result, geostatistics has come out to be an 
appropriate method of ex3ecuting soil properties 
Saito et al., [57]; Liu et al., [58]; Behera and 
Shukla, [59]. 
 
Different researchers had different opinions 
about the various interpolation techniques for 
analysing the spatial variability of soil organic 

carbon. Earlier researchers applied geospatial 
techniques Wei et al., [60]. Zare-mehrjardi et al. 
[61] described that ordinary kriging (OK) and co-
kriging to be better than inverse distance 
weighting (IDW) method. Robinson and 
Metternicht [62] used kriging, IDW and Radial 
basis function (RBF). Pang et al. [63] reported 
that ordinary kriging to be the best technique. 
Hussain et al. [64] reported that Empirical Bayes 
kriging (EBK) as best method for estimation of 
total dissolved solids (TDS) in water. Bhunia et 
al.[49] showed that OK interpolation method was 
better than geo-statistical and deterministic 
methods, whereas IDW method depicted the 
most results. Kumar et al. [48] presented an 
equation involving the use of NDVI to evaluate 
the organic carbon content. The NDVI reflects 
the measure of vegetation condition and amount 
Velmurugan and Carlos, [65]. 
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Table 2. Various geospatial techniques used for assessment of soil properties 
 

Sr. 
no. 

Soil 
properties 
studied 

Data / tools used Advantages / limitations References 

1. Soil organic 
carbon 
(SOC) 

IRS P-6 satellite  
LISS III sensor  

Estimated SOC using geospatial 
methods and relation of SOC with 
NDVI and soil pH. However, further 
research is required by incorporating 
long-term multi-factor experimental 
design for other environmental 
variables. 

Kumar et al., 
[48] 

2. Sloi salinity, 
moisture 
and pH 

Landsat-8 Soil pH was successfully estimated, 
but improvement in extraction 
methods required to explain 
uncertainties of relation of soil pH 
with moisture, salinity and 
temperature. But spectral and spatial 
resolution of Landsat-8 data is 
limited, thus other data with better 
properties should be considered. 

Ghazali et al., 
[43] 

3. Soil 
moisture 

Radar Sentinel-1 
and Landsat-8 
optical and thermal 
band data 

Spatial pattern of crops grown should 
also be considered as soil moisture 
is related with type of crops grown. 

Mohamed et 
al., [2] 

4. Soil organic 
carbon 
(SOC) 

GIS, GPS, Spatial 
interpolation 
techniques viz. 
Inverse distance 
weighting (IDW), 
Local polynomial 
interpolation (LPI), 
Radial basis function 
(RBF), Empirical 
bayes kriging (EBK) 
and ordinary kriging 
(OK)  

 OK was found superior over other 
methods whereas IDW gave worst 
results  

Bhunia et al., 
[49] 

5. Soil 
moisture 

Landsat 4,5,8 
satellites, Thematic 
mapper 

Successfully predicted moisture 
percent of areas where insitu 
measurements are not available. 

Zakir, [42] 

6. Soil salinity Ikonos and Landsat-
5 (3 visible bands 
(1,2&3), 2 NIR (4&5) 
and 1 MIR (7) band, 
ERDAS Imagine 8.7 

Provided accurate methodology for 
estimating soil salinity using 
geospatial techniques.  

Eldiery et al., 
2008 

7. Soil 
moisture 

GIS, Interpolation 
methods viz. inverse 
distance weighting, 
kriging, co-kriging 

Co-kriging generated the most 
accurate soil moisture map  

Gharechelou 
et al., [50] 

8. Soil salinity, 
pH and 
nutrient 

Landsat 5 TM, GIS Examined relation between soil 
salinity level and soil reaction as well 
as , and factors affecting soil 
properties (Na and K contents, land 
inclination)  

Gloweinka et 
al., 2016 
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3.2 Soil pH 
 
Soil pH is a very important soil property as it 
affects various chemical, physical and biological 
characteristics of soil and other plant growth 
processes. The soil analysis done by Denton et 
al. [66] showed that pH had no notable difference 
(p < 0.05) at two depths i.e. 0–20 cm and 20–40 
cm and three locations, which were plotted and 
interpolated with the help of kriging interpolation 
algorithm methods. Ghazali et al. [43] 
collaborated the soil data obtained from survey 
and laboratory with Landsat 8 satellite images to 
formulate multiple regression model named the 
soil pH Index (SpHI). The results of these models 
showed 4.49–7.59 of soil pH, 4.66 in bare soil 
model and 6.62 in paddy leaf model. According 
to Goto [67], soil pH gradually increased from 
initial value of 5.5. Pittman et al. [68]                         
carried out regression analysis between the field 
data and pixel value of Landsat 8 bands.                     
The models developed were used to                    
calculate soil pH by carrying out the accuracy 
assessment. 

 
3.3 Soil Nutrient 
 
Assessment of soil nutrient status using 
geospatial technology is of paramount 
importance for soil productivity, agricultural 
sustainability and food security Peng et al., [8]. 
The vegetation spectral response is used to 
deduce various soil conditions such as nutrient 
differences, water-holding capacity and eroded 
locations. McMurtrey et al. [30] used laser-
induced fluorescence (LIF) and passive 
reflectance measurements in the laboratoryand 
observed differences in maximum intensity of 
fluorescence at 440 nm, 680 nm and 780 nm 
which came out to be related to different levels of 
N fertilization in corn. Krishan et al. [69] used soil 
probe to collect soil samples and a small wooden 
rod for the removal of soil core from the tube. 
Detailed micro and macro nutrients such as 
Calcium carbonate (CaCO3), pH, EC (dsm

-
¹), 

organic carbon (%), nitrate, potassium, 
phosphorous, iron, manganese, copper andzinc 
were measured by Orion iron electrodes using 
general procedure to observe the soil nutrients 
behavior. The map was scanned and geo-
referenced using ArcGIS software. The                            
layout of the map was prepared with latitude and 
longitude for better understanding and more 
information. Similarly, Peng et al. [8]                         
introduced a GA-BPNN method to improve the 
estimation accuracy of soil nutrient                     
contents.  

3.4 Soil Moisture 
 
Spatial variability in soil moisture is influenced by 
complex interaction of various environmental 
factors viz. land use, topography, soil properties, 
precipitation, radiation and vegetation etc. De 
Benedetto et al., [70]; Yao et al., [71] that vary 
immensely over time, thus rendering high 
temporal variability apart from the spatial one. 
Therefore, it is tremendously important to 
estimate not only the total amount of water 
present in the soil but also its spatial and 
temporal distribution within the soil. This is 
achieved through the application of geoscientific 
tools. Newly emerging technologies in remote 
sensing such as thermal infrared, optical, passive 
and active microwave (with high penetration 
potential) have increasingly widened the concept 
of land surface and other associated parameters. 
Thermal infrared/ thermal imaging radar(TIR) and 
optical sensors have a wide coverage and 
produce fine spatial resolution. Nevertheless, the 
surface penetration is minimum and the 
measurements are often obstructed by clouds 
and vegetation, which weakens its relationship 
with the soil moisture. The microwave sensors, 
on the other hand with a higher penetration 
potential up to 5 cm, are not affected by the 
clouds. Hence, they can be effectively used to 
produce higher spatial and temporal resolutions 
under all weather conditions with improved 
physical basis.  
 
The estimation of soil moisture is drawn from 
scattered point measurements occurring at 
discrete intervals. Also, the procurement of 
precise soil moisture measurements, designs 
and locations of soil samples encompasses a 
crucial step. For this, spatial interpolation and 
geospatial techniques act asmost practical tools 
Marin et al., [72]; He et al., [73]; Diana et al., [74]. 
The application of GIS provides a full-fledged 
package of tools including geo-ecological 
monitoring, mapping, evaluation and ultimately 
the spatial analysis e.g, merging, filtering and 
overlaying etc. This effectively exposes the 
spatial interactions between several physical 
attributes of soil viz. type of soil, geology, 
vegetation cover etc. Grunwald et al., [75]; Kevin 
et al., [76]; Harahsheh and Tateishi, [77]. 
 
Various researchers have produced soil moisture 
measurements using Land Surface Temperature 
(LST) and soil reflectance Haas, [78]; Wang et 
al., [79]; El-Zeiny and Effat, [80]. Further, 
moisture of surface soil can be calculated from 
Normalized Difference Vegetation Index (NDVI) 
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and land surface temperature (LST) or simply 
their integration called as triangle method Zeng 
et al., [81]; Petropoulos et al., [82]. These 
methods are based on thermal emissions or 
surface reflectance thus, forming the thermal and 
optical remote sensing Amato et al., [10]; 
Rahimzadeh-Bajgiran et al., [12]; Hammam and 
Mohamed, [11]. Koparan [83] employed optical 
remote sensing and synthetic aperture radar 
(SAR) to predict the total soil moisture.  
 
Gillreath-Brown et al. 2019 developed the Soil 
Moisture Proxy Model (SMPM) which is a 
geospatial soil moisture model that processed 
the topographic and other soil variables to 
compute soil moisture potential over a 
watershed. In an experimental study by 
Gharechelou et al. [50], several geospatial 
processing techniques were used to collaborate 
various geo-environmental layers viz. land use, 
rainfall, soil type, geology, topography etc. into 
homogeneous land unit area (LUA) map. The 
LUA sampling and geostatistical interpolation 
techniques (e.g. Inverse distance weighting 
(IDW), co-kriging and kriging) resulted in the 
most accurate soil moisture database and map in 
the arid region. Likewise, van Leeuwen [41] took 
use of Medium Resolution Imaging 
Spectroradiometer (MODIS) in addition to data 
products to generate index maps of soil moisture. 
The products were NDVI and LST, both of which 
were based on vegetation Satellite index and 
daily moderate resolution LST. The soil moisture 
maps hence generated enabled the constant 
monitoring of spatial and temporal soil moisture 
variation across a larger area. Moreover, soil 
moisture as a parameter can be used to obtain 
useful information on drought and flood 
indicators when successfully merged with 
pedological, climatological, meteorological and 
other geomorphological databases. 
 

3.5 Soil Salinity 
 
Heavy salinization of soil is one of the most usual 
land destruction processes that deteriorates the 
overall productivity of crops. The substantial 
amount of salts adversely influence the crop 
growth, soil health and water quality which leads 
to poor agricultural sustainability, environmental 
health and eventually the economic viability Zhu 
et al., [84]; Corwin et al., [85]. It is complex 
process that relies upon various factors such as 
soil type, land cover, climate, topography, type of 
vegetation, soil management practices, hydraulic 
conductivity, groundwater level, quality of 
irrigation water, etc. Wang et al., [86]; Ma et al., 

[87]. In agricultural fields, soil salinity exhibits 
wide variability both spatially and temporally. 
Therefore, for improvised application of various 
soil reclamation practices and subsequent 
prevention of salinization requires adequate and 
in-depth information on spatial and temporal 
characteristics of soil salinity. Traditionally, soil 
salinity has been assessed through extraction of 
in situ soil samples and their analysis in the 
laboratory to determine the electrical 
conductivity. However, since dense sampling is 
needed for adequate characterization of the 
spatio-temporal variability, such soil sampling 
methods are relatively time- consuming and 
expensive Brunner et al., [88]; Dehaan and 
Taylor, [89]. On the contrary, the use of modern 
geospatial technologies, solute transport models 
and geophysical sensors Farifteh et al., [90] have 
potentially outperformed the conventional 
methods. These professional techniques offer 
comparatively rapid assessment and mapping of 
soil salinity. The geophysical sensors are 
progressively used for rapid and cost-effective 
quantification of the electrical conductivity 
Nosetto et al., [91]. 
 
The remote sensing techniques have been 
increasingly implemented for monitoring and 
mapping the soil salinity. Multispectral data such 
as Landsat, SPOT, IKONOS, QuickBird and the 
Indian Remote Sensing (IRS) series of satellites, 
as well as hyper-spectral data such as EO-1 
Hyperion and HyMap, are highly useful in 
detection and mapping of soil salinity Farifteh, 
[92]; Weng et al., [93]; Teggi et al., [94]; Koshal, 
[95]; Dehni and Lounis, [96]; Setia et al., [97]; 
Dwivedi et al., [98]. Soil salinity can be detected 
from remote sensing data using different direct 
and indirect indicators.  The direct indicators 
include the visible salt layer on the soil surface 
whereas the indirect indicators are halophytes 
growing in the salt challenged soil. As remote 
sensing makes use of electromagnetic radiations 
reflected from target areas to produce detailed 
information regarding the Earth’s surface. 
Therefore, depending upon this concept, the 
remote sensing is used to study the spectral 
reflectance from the thick salt encrustations 
present on the soil surface. For instance, Schmid 
et al. [99] observed the strong spectral 
reflectance of soil crusts in the visible and near-
infrared region. 
 
Singh and Sirohi [100] demonstrated that in 
reflectance from salt surface is higher than the 
non-saline surface, which was further confirmed 
by Rao et al. [27]. Nevertheless, complications 
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arise when the salt crusts and efflorescence 
integrate with other soil components viz. organic 
matter, vegetation, high soil moisture, soil texture 
etc. and as such are not visible. Moreover, 
Metternicht and Zinck [101] revealed that the 
surface roughness or color of salt crust possibly 
interfere the reflectance in the visible and NIR 
range. In such conditions, the direct method may 
result in imprecise measurements both in space 
and time scales Metternicht and Zinck, [101]. 
But, the visible presence of halophytes on the 
soil surfaces interestingly serve as an indirect 
indicator of the soil salinization, thereby, making 
it practicable to detect, monitor and mapthe salt 
affected areas. However, the spectral features of 
vegetation differ with diverse environments such 
as type of soil, vegetation cover and type etc. 
under normal conditions, unhealthy or poor 
vegetation with lesser photosynthetic activity, 
leads to lowered near infrared reflectance (NIR) 
and augmented visible reflectance from the salt 
stressed plants Allbed et al.,[102]; Wang et al., 
[103]. 
 
Hence, based on the observation of this pattern, 
various vegetation indices (VIs) including Soil 
Adjusted Vegetation Index (SAVI) and 
Normalized Differential Vegetation Index (NDVI) 
or simply Salinity Index (SI) and Normalized 
Difference Salinity Index (NDSI) are used by 
several researchers to detect and map soil 
salinity. Other crop/vegetation indices include 
Ratio Vegetation Index (RVI), the Green 
Vegetation Index (GVI), Soil Brightness Index 
(SBI) and the Wetness Index (WI). These have 
been extensively used in experimental studies on 
soil salinity Alhammadi and Glenn, [104]; Zhang 
et al., [105]; Wang et al., [106]. Advantages of 
remote sensing data include wide coverage, 
cost-effective, rapid and timely provision of soil 
salinity maps in addition to multispectral image 
with medium to high resolutions Allbed and 
Kumar, [107]; Metternicht and Zinck,[101].  
 
El Bastawesy and Ali [108] also applied GIS/RS 
techniques for the salinity assessment and 
problem of rising groundwater. Wang et al. [109] 
estimated the soil salinity of agricultural oasis at 
catchment scale. For over four decades, the 
potential of GIS and RS was combined to 
analyze the spatial changes in various soil 
attributes viz. electrical conductivity (EC) and 
exchangeable sodium percentage (ESP). The 
experimental study highlighted that the ESP and 
EC showed spatial deviation with drainage and 
soil depths giving rise to huge decline in the soil 
salinity Güler et al., [110]. Choubey [111] 

analyzed the extent of salinization and water 
table rise using remote sensing in Gujarat, India. 
 

Solute transport model is based on the concept 
of water flow modeling. Its calibration requires 
vast data and various other parameters viz. 
solute transport parameters, soil hydraulic 
parameters, and initial and boundary conditions, 
which are commonly attained from in-
fieldobservations and GIS/RS data (field to 
regional scale). However, the model resolution 
intensively depends upon the resolution of input 
datathus, necessitating the integration of several 
different approaches for the full -fledged 
comprehension of spatial and temporal features 
of soil salinity Metternicht and Zinck, [101]; 
Aldabaa et al., [112]. The combined use of 
remote sensing and GIS techniques are relatively 
more advantageous than used singly Gossel et 
al., [113]. These combined approaches were 
developed for multi-perspective and more 
comprehensive understanding. Ren et al., [114] 
applied the integrated approach and conducted 
soil sampling at multiple scales, then the spatial 
data was processed and analyzed using GIS/RS 
and finally the details of sail salinity dynamics 
were further quantified through solute transport 
model.  
 

4. CONCLUSION 
 
This review highlighted that advances in the field 
of geospatial technology have enabled the 
assessment of spatial variability in soil 
characteristics at regional scale from satellite 
data. Various spectral indices have been devised 
for retrieval of different properties of soil from 
spectral reflectance data, which are able to 
estimate various properties quite accurately. 
Hyper spectral remote sensing and various 
spatial interpolation techniques have lead to 
assess spatial distribution of soil characteristics 
so precisely. Such techniques can be used 
successfully for retrieval and spatial interpolation 
of various soil properties, which can be highly 
beneficial in site specific management leading to 
improved input use efficiency and sustained 
agricultural productivity for future food security. 
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