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Abstract 
Cell proliferation, differentiation, and the elimination of unnecessary cells by apoptosis occur in 
the development of the nervous system. It is reported that brain dysplasia appears as the results 
of myristoylated alanine-rich C kinase substrate (MARCKS) knockout or the mutant mouse. We 
therefore expect that MARCKS participates in the development of the nervous system. However, 
the mechanism underlying such participation has not been identified. In this study, we observed 
the effects of the overexpression of MARCKS or unphosphorylatable MARCKS on cell prolifera-  
tion and TNF-α-induced apoptosis in neuroblastoma SH-SY5Y cells. Furthermore, we restrained 
MARCKS expression by the RNAi method. In the results, MARCKS-overexpressing cells and not 
unphosphorylatable MARCKS-overexpressing cells showed increased cell proliferation rates. On 
the other hand, the RNAi decreased the proliferation of MARCKS-knocked down SH-SY5Y cells. 
These results indicated that MARCKS-overexpressing cells were more sensitive to TNF-α than nor-
mal SH-SY5Y cells. Moreover, in MARCKS-overexpressing cells TNF-α-induced apoptosis was inhi-
bited by caspase-6 and -7 inhibitors but not by caspase-3 inhibitor. These results suggested that 
MARCKS participated in TNF-α-induced apoptosis in a caspase-6 and/or -7-dependent manner. 
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1. Introduction 
Myristoylated alanine-rich C kinase substrate (MARCKS), which has a phosphorylated site domain (PSD), is 
cloned as a protein kinase C (PKC) substrate. It is known that several kinases, including ROCK, PKA, and 
MAPK, phosphorylate MARCKS in vitro [1]. Furthermore, we showed that PKC phosphorylated MARCKS not 
only directly but also through the RhoA/ROCK pathway in SH-SY5Y neuroblastoma cells [2]. 

MARCKS seems to be implicated in cell motility [3], secretion [4], membrane trafficking [5], and mitogene-
sis [6] through the regulation of cytoskeletal structure. Unphosphorylated MARCKS binds to actin directly and 
crosslinks F-actin, whereas phosphorylated MARCKS loses actin binding and polymerization activities [7]. 
Moreover, it is reported that MARCKS releases phosphatidylinositol-4,5-bisphosphate (PIP2) through PSD in a 
phosphorylation-dependent manner [8] by which actin dynamics is regulated. Nevertheless, the exact mechan-
isms underlying the physiological roles of MARCKS are still unclear. 

Stumpo and his colleagues reported that homozygous deletions of the MARCKS gene in mice led to abnormal 
brain development and perinatal death [9]. That report indicated that MARCKS played a pivotal role in the 
normal development processes of neurulation, hemisphere fusion, forebrain commissure formation, and the for-
mation of cortical and retinal laminations. During nervous system development, neuronal cells not only prolife-
rate but undergo a process of apoptosis [10]. We predicted that MARCKS was associated with apoptosis in the 
developing brain.  

A lot of physiological phenomena are associated with apoptosis (e.g., germ cell development, elimination of 
tumor cells and DNA-damaged cells, and blood cell exchange). In these physiological phenomena, several 
apoptotic cascades are partially known. Tumor necrosis factor (TNF)-α and Fas ligand are examples of apopto-
sis-inducing factors [11]. These factors bind to specific receptors (so-called death receptors) on the cell surface, 
by which signals are transmitted into the cells. Although different factors are activated depending on the cause 
of the apoptosis, it is well known that caspases are the principal proteins in apoptosis. 

In this report, we show that MARCKS is associated with both basal apoptotic levels and TNF-α-induced 
apoptosis in neuroblastoma cells. Moreover, we report that MARKCS-related apoptosis is independent from 
caspase-3 but dependent on caspase-6 and/or -7. 

2. Materials and Methods 
2.1. Cell Culture and Proliferation Assays 
SH-SY5Y human neuroblastoma cells (nor-cells), GFP-expressing SH-SY5Y cells (GFP-OE-cells), GFP-fused 
wild-type MARCKS-overexpressing SH-SY5Y cells (wtMAR-OE-cells), and GFP-fused unphosphorylatable 
MARCKS-overexpressing cells (m3MAR-OE-cells) [12] were maintained in Dulbecco’s modified Eagle’s me-
dium supplemented with 10% fetal bovine serum, 100 units/ml penicillin, and 100 µg/ml streptomycin at 37˚C 
in a humidified atmosphere with 5% CO2. Proliferation assays were performed by comparing the cell numbers 
between 2 and 5 days after the cells were plated in complete medium. All cell lines were plated on 24-well 
plates at a density of 5 × 103/well. The cells in each well (from 3 wells per cell line) were counted.  

2.2. RNA Interference 
MARCKS-specific double-stranded RNA oligonucleotides, each consisting of a 25-nucleotide sense sequence 
and a 25-nucleotide antisense sequence, were purchased from Invitrogen. The sequences for MARCKS siRNA 
were as follows: sense, 5’-uucgcugcggucuuggagaacuggg-3’; antisense, 5’-cccaguucuccaagaccgcagcgaa-3’.  

SH-SY5Y cells were plated on 24-well plates at a density of 5 × 103 cells/well. After 24 h, 6.0 pmol of the 
MARCKS-specific or negative control siRNA (Invitrogen) was transfected to the cells using Lipofectamine2000 
(Invitrogen). 

2.3. Western Blotting Analysis 
Trichloroacetic acid precipitants were subjected to Western blotting analyses as previously described [2]. The 
phosphorylation of MARCKS was detected with pS159-Mar-Ab [1] (1:5000 with Can Get Signal solution 1 
(Toyobo)). Signals were detected by Chemi Lumi One (Nacalai Tesque) and Light Capture (ATTO). Densito-
metric analyses were performed using CS Analyzer (ATTO) software. 
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2.4. Apoptosis Detection 
The cells were seeded on cover glasses in 35 mm dishes at a density of 1.0 × 105 cells/dish. After 2 days, the 
medium was changed to FBS-free DMEM with 1 μM TNF-α and incubated for 24 h. The cells were washed 
with ice-cold PBS (−) and fixed with 4% paraformaldehyde/4 mM EGTA/4% sucrose for 1 h at room tempera-
ture. The apoptotic cells were stained by the Apop Tag Red In Situ Apoptosis Detection Kit (Chemicon Interna-
tional), and the cover glasses were mounted on slide glasses with DAPI-containing Vectashield (Vector Labora-
tories) and a Biozero8000 fluorescence microscope (Keyence). The apoptotic cells were counted and the results 
were expressed as means ± SEM of the mean. The statistical differences for the response against TNF-α treat-
ment in each cell line were determined by the two-sided Student’s t-test. The data were analyzed using the Tu-
key-Kramer method for all pairwise comparisons between the TNF-α treatment mean. A difference of p < 0.05 
was considered significant. 

3. Results 
3.1. MRACKS Expression’s Effects on the Cell Proliferation Rate 
Because it has been reported that MARCKS is associated with the proliferation of several cell types [13]-[15], 
we compared the growth speed among normal SH-SY5Y cells (nor-cells), GFP-expressing cells (GFP-OE-cells), 
GFP-fused wild-type MARCKS-overexpressing cells (wtMAR-OE-cells), and GFP-fused unphosphorylatable 
MARCKS (m3MARCKS)-overexpressing cells (m3MAR-OE-cells) [12]. We counted the cells at 2 days and 5 
days after seeding.  

Figure 1(a) shows the cell numbers at 5 days after seeding relative to those at 2 days after seeding. According 
to these results, the cell doubling times were calculated (nor-cell, 1.45 ± 1.21; GFP-OE-cell, 1.50 ± 0.20; 
wtMAR-OE-cell, 1.09 ± 0.31; m3MAR-OE-cell, 1.47 ± 0.17 days). The results indicated that MARCKS over-
expression and its phosphorylation accelerate the growth rate of SH-SY5Y cells. 

 

 
Figure 1. MARCKS involved in the growth of SH-SY5Y cells. (a) All cell lines (nor-, GFP-OE-, wtMAR-OE-, and 
m3MAR-OE-cells) were plated on 24-well plates at a density of 5 × 103/well. The cells per well at 2 and 5 days later were 
counted (n = 3). The cells at 5 days after were divided by those at 2 days after, and the growth rate was expressed as the 
mean ± SD. *p < 0.05 compared with nor-cells; (b) SH-SY5Y cells were transfected with only transfection reagent (mock), 
MARCKS-specific siRNA (MARCKS), or negative control siRNA (NC). After 24 h, Western blotting assays were per-
formed; (c) The MARCKS levels of (b) were quantified by densitometric analyses. The data for the nontreated cells were 
taken as 1; data represent mean ± SEM of four experiments. **p < 0.01 compared with nontreated cells (nor: nor-cell; vec: 
GFP-OE-cell; wt: wtMAR-OE-cell; m3: m3MAR-OE-cells).                                                               
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Next we observed the effects of MARCKS knockdown on cell growth (Figure 1(b)). At first we observed the 
effects of three MARCKS siRNA from Stealth RNAi (Invitrogen) and most effective sequence, that sequence is 
shown in Materials and Methods, is decided to use mainly hereafter (data not shown). 

The growth of MARCKS-knocked down cells was slower than that of control cells (Figure 1(c)) and other 
siRNAs showed same but little slight effects. However, the cell-cycle phases did not differ among these four 
kinds of cells in flow cytometry (data not shown). These results showed that MARCKS is involved in the proli-
feration of SH-SY5Y cells. 

3.2. MARCKS Is Involved in TNF-α-Induced Apoptosis of SH-SY5Y Cells 
It is well recognized that some proteins are involved in both apoptosis and cell-cycle regulation [16]-[18]. 
Therefore, we observed the effects of MARCKS on apoptosis. In this report we used TNF-α, which is an impor-
tant mediator of inflammation, apoptosis, and the development of secondary lymphoid structures, to induce 
apoptosis. The immunocytochemistry showed that, following 24 h TNF-α treatment, more than 60% of cells 
expanded and that the apoptotic cells were condensed (Figure 2(a) arrowheads). Next we investigated the dif-
ference in the apoptosis rate among these four cell types when we treated these cells with TNF-α. As we ex-
pected, TNF-α induced apoptosis in all of the kinds of cells we used. Especially in wtMAR-OE-cells, apoptosis 
was induced remarkably. On the other hand, the apoptosis rate of m3MAR-OE-cells was similar to those of nor- 
and GFP-OE-cells (Figure 2(b) and Figure 2(c)). 

 

 
Figure 2. Phosphorylatable MARCKS accelerates TNF-α-induced apoptosis. (a) The nor-cells were exposed to TNF-α for 
24 h. The nuclei, MARCKS, and actin were detected with DAPI, MARCKS-specific antibody and FITC-conjugated second-
ary antibody, and rhodamine-conjugated phalloidin, respectively. The arrow indicates apoptotic cell; (b) All cell lines (nor-, 
GFP-OE-, wtMAR-OE-, and m3MAR-OE-cells) were exposed to TNF-α for 24 h. The apoptotic cells were stained by the 
ApopTag Red In Situ Apoptosis Detection Kit (red) and the nuclei were stained with DAPI (blue); (c) The apoptotic cells in 
each cell line in B were counted, and the rates are shown. The data represent the mean ± SD of four experiments. *p < 0.05 
compared with TNF-α-treated nor-cells.                                                                               



A. Tanabe et al. 
 

 
576 

Next we knocked down MARCKS in SH-SY5Y cells with MARCKS-specific siRNA and treated the cells 
with TNF-α. The immunocytochemistry shows that MARCKS expression is repressed with MARCKS-specific 
siRNA but not with negative control siRNA (NC) (Figure 3(a)). The MARCKS knockdown increased the basal 
apoptosis rate while NC showed no effect. On the other hands, in the case of TNF-α-induced apoptosis 
MARCKS siRNA did not show significant differences with both mock and NC (Figure 3(b) left panel). As we 
thought in these sensitive conditions such adding damages to the cells by transfection regent and apopto-
sis-inducing regent even NC affects apoptosis rate, we calculated relative effects as fold (Figure 3(b) right pan-
el). It shows that MARKCS siRNA almost completely inhibits TNF-α-induced apoptosis. These results strongly 
indicate that MARCKS is involved in apoptosis. 

3.3. Phosphorylated MARCKS Is Involved in TNF-α-Induced Apoptosis 
The outcome shown in Figure 2 indicates that wild-type MARCKS accelerates TNF-α-induced apoptosis but 
m3MARCKS does not. Thus we thought that phosphorylated MARCKS is involved in the TNF-α-induced 
apoptosis cascade. To confirm our opinion, we first ascertained the pan-MARCKS expression levels in these 
cells. In nor- and GFP-OE-cells, the endogenous MARCKS (endo-MARCKS) amount increased slightly, al-
though those of wtMAR-OE- and m3MAR-OE-cells did not change. On the other hand, the GFP-fused 
MARCKS (exo-MARCKS) amount in both wtMAR-OE- and m3MAR-OE-cells increased after TNF-α treat-
ment (Figure 4(a) upper panel). Nonetheless, the amount of exo-MARCKS was smaller than that of endo- 
MARCKS. We also observed the phosphorylation level of MARCKS in TNF-α-treated cells. Without stimula-
tion, exo-MARCKS in wtMAR-OE-cells was phosphorylated. In the early phase after TNF-α stimulation (0 - 1 h),  

 

 
Figure 3. MARCKS knockdown reduces TNF-α-induced apoptosis. (a) MARCKS in the nor-cells was knocked down with 
MARCKS-specific siRNA. The cells were exposed to TNF-α for 24 h. The nuclei and MARCKS were detected with DAPI 
and with MARCKS-specific antibody and FITC-conjugated secondary antibody, respectively. The apoptotic cells were 
stained with the ApopTag Red In Situ Apoptosis Detection Kit; (b) left panel. The apoptotic cells in A were counted and the 
rates are shown. The data represent the mean ± SEM of three to six experiments. *p < 0.05 compared with TNF-α-treated 
nor-cells (nor: nor-cell; vec: GFP-OE-cell; wt: wtMAR-OE-cell; m3: m3MAR-OE-cells).                                     
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Figure 4. TNF-α induces MARCKS phosphorylation through ROCK and PKC. (a) All cell lines (nor-, GFP-OE-, wtMAR- 
OE-, and m3MAR-OE-cells) were exposed to TNF-α for 24 h. MARCKS, phosphorylated MARCKS, and β-actin were de-
tected by Western blotting analyses using anti-MARCKS antibody, pS159-Mar-Ab, and anti-α-actin antibody, respectively; 
(b) wtMAR-OE-cells, pretreated with ROCK inhibitor HA-1077 or PKC inhibitor Ro-31-8220, were exposed to TNF-α for 
24 h. Phosphorylated MARCKS and α-actin were detected by Western blot analyses using pS159-Mar-Ab and anti-α-actin 
antibody, respectively (nor: nor-cell; vec: GFP-OE-cell; wt: wtMAR-OE-cell; m3: m3MAR-OE-cells).                             

 
no increase in MARCKS phosphorylation was detected (data not shown). Nonetheless, 24 h after TNF-α treat-
ment, only exo-MARCKS of wtMAR-OE-cells was phosphorylated (Figure 4(a), middle panel). No change in 
the β-actin amount with TNF-α treatment was detected (Figure 4(a), lower panel). The TNF-α-induced phos-
phorylation of exo-MARCKS in wtMAR-OE-cells was slightly reduced by pretreatment with either ROCK in-
hibitor HA-1077 or PKC inhibitor Ro-31-8220 (Figure 4(b)). 

3.4. In wtMAR-OE-Cells, Caspase-6 and/or -7, but Not Caspase-3,  
Is Involved in TNF-α-Induced Apoptosis 

Although the apoptosis cascade is not perfectly understood, caspase-3 is considered one of the most important 
proteins in apoptosis. Therefore, at first we used caspase-3 inhibitor to observe the participation of caspase-3 in 
the apoptosis of TNF-α-treated cells. In nor-, GFP-OE-, and m3MAR-OE-cells, TNF-α-induced apoptosis was 
decreased with a caspase-3 inhibitor z-DQMD-fmk. In wtMAR-OE-cells, on the other hand, TNF-α-induced 
apoptosis was not affected by z-DQMD-fmk (Figure 5). 

Because caspases-6 and -7 are classified as effector caspases, as is caspase-3, we investigated the possibility 
that caspase-6 or -7 is involved in TNF-α-induced apoptosis in wtMAR-OE-cells. Before TNF-α treatment, we 
treated the cells with z-VEID-fmk or z-VEVD-fmk, which are caspase-6 and caspase-3/7 inhibitors, respectively. 
Both z-VEID-fmk and z-VEVD-fmk reduced the apoptosis rate in wtMAR-OE-cells (Figure 6). Another  
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(a)                                                      (b) 

Figure 5. MARCKS upregulates the TNF-α induced apoptosis of caspase-3 independently. nor-cells pretreated with or 
without caspase-3 inhibitor z-DQMD-fmk were exposed to TNF-α for 24 h. The apoptotic cells were stained by the ApopTag 
Red In Situ Apoptosis Detection Kit (red), and the nuclei were stained with DAPI (blue); (b) The apoptotic cells in each cell 
line in A were counted, and the rate is shown. The data represent the mean ± SEM of three experiments. **p < 0.01 and *p < 
0.05 compared with each TNF-α-treated cell line without caspase-3 inhibitor treatment (nor: nor-cell; vec: GFP-OE-cell; wt: 
wtMAR-OE-cell; m3: m3MAR-OE-cells).                                                                              

 

 
(a)                                                    (b) 

Figure 6. MARCKS upregulates TNF-α-induced apoptosis of caspase-6 and/or caspase-7 dependently. The nor-cells pre-
treated with or without caspase-3 inhibitor z-VEID-fmk or caspase-3/7 inhibitor z-VEVD-fmk were exposed to TNF-α for 24 
h. The apoptotic cells were stained by the ApopTag Red In Situ Apoptosis Detection Kit (red), and the nuclei were stained 
with DAPI (blue); (b) The apoptotic cells in each cell line in A were counted, and the rate is shown. The data represent the 
mean ± SEM of three experiments. **p < 0.01 compared with TNF-α-treated wtMAR-OE-cell line without caspase-3 inhibi-
tor treatment (nor: nor-cell; wt: wtMAR-OE-cell).                                                                        

 
caspase-3/7 inhibitor 5-[(S)-(-)-2-(Methoxymethyl)pyrrolidino] sulfonylisatin also inhibited the induction of 
apoptosis by TNF-α in wtMAR-OE-cells (data not shown) as well as z-VEVD-fmk. These results suggest that 
caspases-6 and/or 7 are involved in the apoptosis cascade in TNF-α-treated wtMAR-OE-cell.  

Consequently, we consider that phosphorylated MARCKS is involved in TNF-α-induced apoptosis through 
caspases-6 and/or -7. 
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4. Discussion 
The importance of MARCKS in the developing brain has been reported, and recently it was revealed that 
MARCKS modulates radial progenitor placement and proliferation in the developing brain [14]. It is well 
known that MARCKS is associated with proliferation in several types of cells besides glial cells [19] [20]. 
However, the relationship between MARCKS and neuronal cell proliferation has not been clarified. In this study, 
in SH-SY5Y cells, overexpression of MARCKS increased the proliferation rate, while MARCKS knockdown 
reduced it. Moreover, unphosphorylatable MARCKS overexpressed cells did not change the growth rate. Our 
findings suggest that MARCKS is involved in the growth of not only glial cells but also neuronal cells. 

In the developing brain apoptosis, as well as cell proliferation, is an unavoidable cell response. In this study, 
we showed that wild-type MARCKS-overexpressing cells (wtMAR-OE-cells) upregulate TNF-α-induced apop-
tosis. It is well known that MARCKS is phosphorylated by PKC. Actually, TNF-α-induced MARCKS phos-
phorylation was partially inhibited by PKC inhibitor Ro-31-8220. Therefore, we thought that PKC plays an im-
portant role in phosphorylated MARCKS-involved apoptosis. Several PKCs are involved in TNF-α-induced 
apoptosis in several cell types [21]-[23]. In the future, an issue to examine is which PKC isoform is involved in 
TNF-α-treated SH-SY5Y and how MARCKS is associated with it. 

In this study we showed that ROCK inhibitor HA-1077 also inhibited TNF-α-induced MARCKS phosphory-
lation at least partially. Besides PKC, ROCK is a candidate for kinase mediating MARCKS phosphorylation in 
the TNF-α-induced apoptosis. Because Mong and his colleagues reported that TNF-α activates JNK through the 
Rho/ROCK pathway [24], it is reasonable to infer that MARCKS is phosphorylated downstream from TNF-α. 
TNF-α also activates MAPK in several signal pathways [25]-[27] including the apoptotic cascade [28] [29]. It is 
reported that MAPK phosphorylates MARCKS in vitro [1] [30]. Moreover, Nwariaku and his colleagues indi-
cated that ROCK inhibition attenuated TNF-α-induced MAPK activation [31]. Thus, ROCK is closely related to 
TNF-α. Previously we showed that PKC phosphorylates MARCKS through ROCK at least partially [2]. In the 
case of TNF-α-induced apoptosis, PKC may activate ROCK and would consequently induce the phosphoryla-
tion of MARCKS.  

MARCKS knockdown also increased apoptosis without TNF-α treatment. In the case of muscle cell spreading, 
which is mediated by integrin, MARCKS was localized soon after cell adhesion to the focal adhesion site and 
was phosphorylated by PKCs, leading to translocation from the membrane to cytosol [32]. Cell adhesion in-
volving integrin was associated closely with TNF-α-induced apoptosis [33]. It is possible that MARCKS regu-
lates the basal apoptosis level through integrin-associated cell adhesion.  

Talen et al. have reported that TNF-α induces the synthesis, myristoylation, and phosphorylation of 
MARCKS in neutrophils [34]. In our study, however, a slight increase in endo-MARCKS was recognized in 
nor- and GFP-OE-cells. On the other hand, although the exo-MARCKS amount was elevated by TNF-α, endo- 
MARCKS did not increase in wtMAR-OE- or m3MAR-OE-cells. We inserted MARCKS cDNA upstream from 
GFP, which is regulated under a cytomegalovirus (CMV) promoter in pEGFP-N1 to construct the GFP- 
MARCKS expression plasmid, and the CMV promoter is activated by TNF-α [35]. Therefore, TNF-α stimula-
tion upregulates exo-MARCKS expression. Taken together, the results indicate that TNF-α raised the total 
MARCKS amount slightly in all types of cells. Although TNF-α elevated the exo-MARCKS amount, the in-
crease was very small compared with the endo-MARCKS amount. However, the phosphorylated exo-MARCKS 
amount was several times larger than the phosphorylated endo-MARCKS amount. We cannot explain why 
exo-MARCKS is phosphorylated more easily than endo-MARCKS. However, from a different viewpoint we 
might be able to create a highly phosphorylated MARCKS expression system.  

Caspase activation is a critical event in the onset of apoptosis [36]. Fourteen caspases have been identified to 
date [37]. According to the roles in apoptosis, caspases are divided roughly into two groups: initiator caspases 
and effector caspases. Caspases-2, -8, -9, -10, and -12 are initiator caspases. The apoptotic signals through the 
initiator caspases converge on effector caspases (caspases-3, 6, and 7). Although the roles of these caspases are 
clearly different, their activation mechanisms are remarkably similar [38]. All caspases recognize specific 
four-residue sequences and cleave peptide bonds located strictly after an Asp group. Inactive procaspases are 
digested by initiator caspases and activated. These active effector caspases digest their own substrates, so-called 
death substrates. In this study, we showed that inhibition of caspase-6 and -7, but not -3, reduced the TNF-α- 
induced apoptosis of wtMAR-OE-cells. However, the reduction of MARCKS amount which means MARCKS 
digestion was not detected. It remains unclear how MARCKS affects apoptosis. 
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5. Conclusion 
Taken together, the present results show that MARCKS phosphorylation is involved in TNF-α-induced neuronal 
cell apoptosis. To our knowledge, this is the first report to show the association of MARCKS with apoptosis. 
This novel apoptosis pathway will lead to the elucidation of apoptosis mechanisms in neurons and in brain de-
velopment. 
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