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This research aimed to identify and quantify Vibrio parahaemolyticus in fresh oysters (Crassostrea 
gigas), mussels (Perna perna) and seawater from different regions of cultivation of bivalve shellfishes in 
the seacoast of Santa Catarina, Brazil. Samples were collected between October 2012 and December 
2013 and 130 oysters samples (Crassostrea gigas), 215 mussels samples (Perna perna) and 222 
seawater were collected. The occurrence of V. parahaemolyticus in oysters and mussels was low, 10.76 
and 11.62% of the samples tested. Higher incidences of V. parahaemolyticus were observed in seawater 
(18%). The density of V. parahaemolyticus in summer (December to March) was significantly greater 
than those in the other 3 seasons (P < 0.01). The occurrence of pathogenic V. parahaemolyticus in 
oyster, mussels and seawater was very low (<10%). It is recommend that control measures should be 
considered, including the establishment of an intensive and continuous monitoring of potentially 
pathogenic V. parahaemolyticus from all oyster-growing areas, the environmental parameters, and the 
assessment of the region-specific human health risk due to consumption of oyster. 
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INTRODUCTION 
 
Seafood is recognized as a nutritious food choice, and is 
liked by increasing numbers of consumers worldwide 
(Hellberg et al., 2012). For the last two decades, there 
has been a fourfold growth in commercial aquaculture 
worldwide (Cabello, 2006). In Brazil, the production of 
bivalve shellfishes occurs mainly in the state of Santa 

Catarina, in the southern region of Brazil, due to the 
excellent geographical conditions of this area for the 
cultivation of marine organisms, such as the presence of 
a large number of bays, which facilitates the 
establishment of marine farms (Coelho et al., 2003; 
Corrêa et al., 2007). 
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Despite the increase, the main obstacles in the 
consumption of seafood are its high perishability and risk 
to health due to contamination by pathogens (Reyhana 
and Kutty, 2014). In addition to the indicators of faecal 
contamination, which are used to assess the 
microbiological quality of bivalve molluscs in Brazil, 
different species of the Vibrio genus occur naturally in 
marine, coastal and estuary environments, where some 
species such as Vibrio parahaemolyticus, Vibrio 
vulnificus and Vibrio cholerae are potentially pathogenic 
for men, and may be present in fishes and raw shellfishes 
or partially subjected to cooking (Thompson et al., 2004). 
The possibility of seafood consumers to be infected by 
pathogenic vibrios by eating oysters depends on the 
microbiological quality of the marine habitat, as well as on 
the practices of handling and processing of these 
shellfish (Vieira et al., 2011). The occurrence of these 
bacteria is not related to the counts of Escherichia coli or 
thermotolernat coliforms, therefore the specific constant 
monitoring is required (Pereira, 2002; Oliver, 2006; 
Suffredini et al., 2014). 

Infections caused by Vibrio parahaemolyticus have 
been reported in several countries in Asia (Chiou et al., 
2000; Chowdhury et al., 2013; Kubota et al., 2008; Ma et 
al., 2014; Okuda et al., 1997; Tuyet et al., 2002; 
Vuddhakul et al., 2006), United States (Haendiges et al., 
2014; Sims et al., 2011), in Europe only a few outbreaks 
or sporadic cases were reported in the last decade as a 
consequence of the consumption of local or imported 
seafood (Martinez-Urtaza et al., 2005; Ottaviani et al., 
2008, 2010b, 2012; Quilici et al., 2005; Sala et al., 2009), 
and some South American countries like Chile (Fuenzalida 
et al., 2006; Cabello et al., 2007; Harth et al., 2009), Peru 
(Gil et al., 2007; Martinez-Urtaza et al., 2008) and Brazil 
(Leal et al., 2008) have also reported outbreaks. 

Pathogenic strains of Vibrio parahaemolyticus can be 
differentiated from non-pathogenic strains with its ability 
to produce thermostable hemolysin (TDH), whose 
production is called the Kanagawa phenomenon. The 
pathogenicity of Vibrio parahaemolyticus is associated 
with the presence of the tdh and trh gene in oysters 
(Nishibuchi and Kaper, 1995). 

The concentration of V. parahaemolyticus, in oysters 
and mussels is directly related to water temperature, with 
a higher concentration being present when the bivalve 
molluscs are in warm water. Because of this, these 
microorganisms are rarely isolated when the water 
temperature is below 15°C (Pruzzo et al., 2005; Su and 
Liu, 2007). In Brazil, the temperature of sea waters is 
above 20°C in most of the year, favouring the occurrence 
of these microorganisms in the different stations. 

This research aimed to identify and quantify V. 
parahaemolyticus in fresh oysters (Crassostrea gigas) 
and mussels from different regions of cultivation of 
bivalve shellfishes in the seacoast of Santa Catarina, 
Brazil. 
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MATERIALS AND METHODS 
 
Collection and preparation of the samples 
 

Between October, 2012 and December, 2013, 130 oysters samples 
(Crassostrea gigas), 215 mussels samples (Perna perna) and 222 
seawater samples were collected directly from three geographical 
regions in Santa Catarina where there is shellfish farming in Brazil 
(Figure 1). 

Each oysters and mussels sample consisted of 12 units. The 
oysters and mussels were transported to the laboratory in an 
isothermal box with packaged potable ice, and analyzed within 6 h 
of sampling.  

The oysters and mussels were scrubbed under tap water to 
remove debris, allowed to dry, disinfected with 70% ethanol, and 
opened aseptically using a sterilized knife. The flesh and intervalve 
liquid were aseptically transferred to sterile bags and were 
homogenized for 1 min, forming the pool of 12 units. 
 
 
Isolation and enumeration of Vibrio parahaemolyticus in oyster 
and mussels samples 
 
Enumeration of V. parahaemolyticus was performed using most 
probable number (MPN) technique (Kaysner and DePaola, 2004). 
Approximately 25 g of the homogenate was added to 225 ml of 
phosphate buffered saline (PBS). Serial 10-fold dilutions were 
prepared up to 1:106 and three aliquots of each dilution were 
inoculated into alkaline peptone water tubes and incubated 
overnight at 37°C. After incubation, a loopful from the top 1 cm, 
approximately, of each broth tube with turbid growth was streaked 
onto thiosulfate-citrate-bile salts-sucrose (TCBS) agar plates 
(Oxoid, UK) and incubated at 37°C for 24 h. Five to ten typical 
colonies from each plate were selected and isolated for 
identification. Sucrose-negative (blue-green on TCBS agar) colonies 
were submitted to confirmation as Gram-negative and oxidase-
positive. Further biochemical differentiation for identification and 
confirmation of isolated items were performed using the API 20E 
system (bioMérieux, France). Total populations of V. 
parahaemolyticus in oysters and mussels were determined by 
converting numbers of APW tubes that were positive for V. 
parahaemolyticus to MPN g-1 using the MPN table. All strains of V. 
parahaemolyticus were confirmed genotypically through the 
detection of the tlh gene by multiplex qPCR. 
 
 
Multiplex PCR for the detection of rox, tdh and trh genes 
 
The extraction of bacterial DNA was made in QiaCube equipment 
(Qiagen) using the DNeasy Blood and Tissue kit (Qiagen) with 
specific protocol for the equipment. Real time multiplex PCR was 
performed using the kit V. parahaemolyticus multiplex kit 
(Biotecon). The target genes were the Rox to confirm the species, 
and tdh and trh genes of pathogenicity. The protocol used was 
indicated in the kit manual. 

 
 

Statistical analysis 
 

Results of microbiological tests were transformed into log values 
and were assumed to be normally distributed; statistical analyses 
were performed in the Statistica 7.0® software (Stat-Soft, Inc., 
USA). To facilitate statistical analyses of quantitative data obtained 
by most probable number for counts V. parahaemolyticus when 
levels were below the limit of detection, there was substitution for 2 
MPN g-1 and test of significance of the  observed  differences  in  V.
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Figure 1. The coastal region which is the cultivation area of bivalve molluscs in the Santa 
Catarina. 

 
 
 

Table 1. Occurrence of Vibrio parahaemolyticus in oyster, mussels and seawater samples. 
 

Sample Season 
Number of samples 

tested 
Number of positive 

samples (%) 

Level of V. parahaemolyticus (MPN/g) 

< 100 10
2
-10

3
 10

3
-10

4
 

Oyster Summer 50 10 (20%) - 6 4 

Oyster Autumn 25 1 (4%) 1 - - 

Oyster Winter 25 - - - - 

Oyster Spring 30 3 (10%) 2 1 - 

Mussel Summer 120 21 (17.5%) 4 8 9 

Mussel Autumn 25 1(4%) 1 - - 

Mussel Winter 25 - - - - 

Mussel Spring 45 3 (6.6%) 2 1 - 

Seawater Summer 120 37 (30.8%) 10 18 9 

Seawater Autumn 30 9(30%) 9 - - 

Seawater Winter 30 2(6.6%) 2 - - 

Seawater Spring 42 12 (28.5) 10 2 - 

 
 
 
parahaemolyticus levels, environmental parameters in oysters and 
mussels across the 22 samplings sites was conducted using a one-
way analysis of variance (ANOVA), an alpha level of 0.05 was 
considered using the minimum level for statistical significance. 
 
 

RESULTS AND DISCUSSION 
 
The occurrence of V. parahaemolyticus in oysters and 
mussels was low, 10.76% and 11.62% of the samples 
tested (Table 1). Higher incidences of V. 
parahaemolyticus were observed in seawater (18%). 

The densities of V. parahaemolyticus in oyster, mussels 
and seawater samples are listed in Table 1. They were 
higher in the summer months, especially in February and 

March. The density of V. parahaemolyticus in summer 
(December to March) was significantly greater than those 
in the other 3 seasons (P < 0.01). The occurrence of 
pathogenic V. parahaemolyticus in oyster, mussels and 
seawater was very low (<10%). Only 4 of 130 oysters, 5 
of 215 and 5 of 220 seawater samples contained 
detectable levels of pathogenic strains. These results 
indicated that most V. parahaemolyticus in the 
environment were nonpathogenic to humans. Although, 
the levels of V. parahaemolyticus in oysters reported in 
this study were much lower, postharvest processing 
conditions and storage temperatures could allow 
contaminated V. parahaemolyticus to multiply to a higher 
level  in  market  oysters.  Studies  have  shown  that  the 



 
 
 
 
 
populations of V. parahaemolyticus in unrefrigerated 
oysters could increase rapidly to reach 50-fold to 790-fold 
its original level within 24 h after harvest if oysters were 
exposed to an elevated temperature (Gooch et al., 2002). 

Epidemiological data from CDC on association with V. 
parahaemolyticus gastroenteritis with tdh-carrying strains 
in the period 2001–2004 and US risk assessment studies 
on oysters (FDA, 2005), support the assumption that V. 
parahaemolyticus risk is proportional to exposure to 
different levels of pathogenic V. parahaemolyticus (WHO, 
2011). According to some studies, pathogenic V. 
parahaemolyticus levels may be reliably estimated from 
total V. parahaemolyticus levels (Miwa et al., 2003; 
Nordstrom et al., 2007). On the other side, other studies 
showed that the ratio between total and pathogenic V. 
parahaemolyticus in the environment may be quite 
variable over time, as in the case of the monitoring 
performed in Alaskan waters, where percentage of 
potentially pathogenic strains in two consecutive 
summers (2004 and 2005) changed from 74 to 30% 
(WHO, 2011). Such variability, together with the limited 
number of quantitative data on V. parahaemolyticus 
levels in the environment and in shellfish harvested in 
regions as Europe (Cantet et al., 2013), Asia (Deepanjali 
et al., 2005), South America (Garcia et al., 2009), which 
are occasionally involved in outbreaks, underline the 
need for analytical assays which allow the enumeration of 
both total and potentially pathogenic (tdh and/or trh 
positive) V. parahaemolyticus strains. Trouble variables 
for the presence of V. parahaemolyticus in seafood have 
been shown in studies by many researchers around the 
world, using conventional bacteriological methods. The 
results found in this study are in agreement with the 
results reported by Nordstrom et al. (2007), a study 
conducted in Alaska (USA), Cabello et al. (2007) in Chile, 
Gil et al. (2006) in Peru and Quintoil et al. (2007), India. 

Higher incidence of V. parahaemolyticus, however, was 
found using conventional methods of wild mullet in Italy 
(Serracca et al., 2011), cockles in Indonesia (Zulkifli et 
al., 2009), various seafood in India (Chakraborty et al., 
2008) and in the USA mussels (Lu et al., 2006). 
Furthermore, the lower incidence of 8% (Hassan et al., 
2012), were reported in the Netherlands seafood. Ramos 
et al. (2014) found an incidence of V. parahaemolyticus, 
30.0% in samples of oysters and 33.3% in water samples 
from cultivation sites in Bahia Sul in Florianopolis, in the 
study region of this work. 

Several factors are involved in the distribution and 
survival of microorganisms in estuarine ecosystems such 
as biotic and abiotic parameters of water, such as 
temperature, salinity, pH and turbidity (Ristori et al., 2007; 
Strom and Paranjpye, 2000). The concentration of V. 
parahaemolyticus in seawater increases with increasing 
temperature and is correlated with the seasonal increase 
in the occurrence of sporadic cases of infections in 
months with higher temperature (Hlady and Klontz, 1996). 
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The presence of V. parahaemolyticus seems to be 
constant where the sea water temperature is >10°C, 
unlike what occurs in Europe, where isolation of this 
pathogen decreases during the winter months (Baker-
Austin et al., 2013). Hence, V. parahaemolyticus can be 
considered ubiquitous in the marine environment. The 
World Health Organization (WHO, 2011) listed the 
optimum temperature for V. parahaemolyticus growth as 
37°C, with a wide growth range of 5-43°C. Several 
studies have shown a positive correlation between 
contamination of raw shellfish by V. parahaemolyticus 
and water temperature with higher frequencies being 
detected during warmer months in spring and summer 
seasons than in winter (DePaola et al., 2003; Parveen et 
al., 2008; Johnson et al., 2012; Ceccarelli et al., 2013). 

The data provided in this study on contamination levels 
of total and potentially pathogenic V. parahaemolyticus 
and seasonal distribution, will help in defining appropriate 
monitoring programs and post-harvest policies for this 
hazard. The acquisition of further quantitative information 
on V. parahaemolyticus distribution in production areas 
and marketed products (exposure assessment), together 
with studies on the effectiveness of post-harvest 
treatments, will help in the definition of codes of practice 
for vibrios in shellfish and improve the safety of products. 
 
 

Conclusion 
 
In conclusion, these results demonstrate greater seasonal 
variations in total and pathogenic V. parahaemolyticus 
densities in oysters. Hence, there may be more un-
certainty in the use of densities of total V. 
parahaemolyticus organisms as alternative for risk 
predictions as was previously recognized. These findings 
can provide a reference for the comprehensive manage-
ment and control of the harvesting areas. Therefore, it is 
recommended that control measures should be 
considered, including the establishment of an intensive 
and continuous monitoring of potentially pathogenic V. 
parahaemolyticus from all oyster-growing areas, the 
environmental parameters, and the assessment of the 
region-specific human health risk due to consumption of 
oyster. Thus, more research is needed to assess 
differences in virulence among various toxigenic strains 
and to assess and manage the risk of illness due to 
human exposure to oysters harvested in contaminated 
environments under the light of the climate change. 
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